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The parameter reconstruction problem in a sum of Dirac measures from its low
frequency trigonometric moments is well understood in the univariate case and
has a sharp transition of identifiability with respect to the ratio of the separation
distance of the parameters and the order of moments. Towards a similar statement
in the multivariate case, we present an Ingham inequality which improves the
previously best known dimension-dependent constant from square-root growth
to a logarithmic one. Secondly, we refine an argument that an Ingham inequality
implies identifiability in multivariate Prony methods to the case of commonly used
max-degree by a short linear algebra argument, closely related to a flat extension
principle and the stagnation of a generalized Hilbert function.
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1 Introduction

The reconstruction of a Dirac ensemble from its low frequency trigonometric moments or
equivalently the parameter reconstruction problem in exponential sums has been studied
since [13] as Prony’s method, see e.g. [37, 35, 16, 41, 32, 15] and the survey [30]. Popular
different approaches to this reconstruction problem include, without being exhaustive, convex
optimization [8, 7, 4, 3], where the problem has been termed ‘super-resolution’ and can be
solved via a lifting technique by semidefinite optimization, and maximum likelihood tech-
niques [39, 5, 6, 10, 34, 27, 28, 24]. Multivariate variants of Prony-like methods have been
considered e.g. in [18, 38, 1, 33, 31, 14, 21, 36, 20] using generic arguments, projections to
univariate problems, or Gröbner basis techniques.

The previously best known condition for an Ingham inequality to hold is nq >
√
d/2, where

n denotes the order of the used moments, q the separation distance of the parameters, and
d the dimension, respectively. Together with a Gröbner basis construction which asks for
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a total-degree setting and thus introduces a factor d, this results in a deterministic a-priori
bound (n− d− 1)q > d3/2 for the success of Prony’s method, see also [20].

In this paper we refine an appropriate Ingham inequality as well as the algebra techniques
to improve this a-priori condition to (n− 1)q > 3 + 2 log d. After fixing notation, Section 2.2
improves the Ingham inequality [17, 19, 33] by constructing a function with compact support
in space domain and zero crossing at an `p-ball in frequency domain. In Section 2.3, we
refine our previous analysis [20] of the vanishing ideal of the parameter set and prove that an
interpolation condition, equivalent to some full rank condition, implies that the parameters
can be identified by polynomials of certain max-degree. In total, the multivariate Prony
method correctly identifies the parameters under a deterministic condition which is sharp up
to a logarithmic factor in the space dimension.

2 Main results

In what follows, we establish a deterministic condition for the success of Prony’s method
relying on two ingredients - a new Ingham inequality and an analysis of the parameters’
vanishing ideal. Ingham’s inequality generalizes Parseval’s identity in the sense that a norm
equality between a space and a frequency representation of a vector is replaced by a certain
norm equivalence. With respect to the identifiability in Prony’s method, we are interested in
establishing conditions on the parameters such that a non trivial lower bound in this inequality
exists. Theorem 2.4 and Corollary 2.5 give such a result under a separation condition on the
parameters and improve upon [17, 19, 33] by a smaller space dimension dependent constant.
Subsequently, Theorem 2.8 and Corollary 2.10 apply the established Ingham inequality to
prove success of Prony’s method by adapting standard arguments from algebraic geometry
[40, App. B] to our so-called max-degree setting.

2.1 Preliminaries

Throughout the paper, d ∈ N always denotes the dimension and Td := {z ∈ C : |z| = 1}d the
torus with parameterization Td 3 z = e−2πit for a unique t ∈ [0, 1)d. Now let M ∈ N, pairwise
distinct parameters tj ∈ [0, 1)d, j = 1, . . . ,M , be given, and define their (wrap-around)
separation distance by

q := min
r∈Zd, j 6=`

‖tj − t` + r‖∞.

For given coefficients f̂j ∈ C \ {0}, the trigonometric moment sequence of the complex Dirac

ensemble τ : P([0, 1)d)→ C, τ =
∑M

j=1 f̂jδtj , is the exponential sum

f : Zd → C, k 7→
∫
[0,1)d

e−2πiktdτ(t) =

M∑
j=1

f̂jz
k
j ,

with parameters zj := e−2πitj = (e−2πitj,1 , . . . , e−2πitj,d) ∈ Td. A convenient choice for the
truncation of this sequence is ‖k‖∞ := max{|k1|, . . . , |kd|} ≤ n and our aim is to reconstruct
the parameters tj ∈ [0, 1)d and coefficients f̂j ∈ C\{0} from the trigonometric moments f(k),
k ∈ Zd, ‖k‖∞ ≤ n.

Prony’s method tries to realize the parameters zj as common zeros of certain polynomials

as follows. We identify C(n+1)d with the space of polynomials of max-degree n, i.e., Πn :=
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{p : p(z) =
∑

k∈Nd
0,‖k‖∞≤n

pkz
k}, and for K ⊂ C(n+1)d we let

V (K) := {z ∈ Cd : p(z) = 0 for all p ∈ K}.

Given the above moments, it turns out that an appropriate set of polynomials is the kernel
of the multilevel Toeplitz matrix

T := Tn := (f(k − `))k,`∈Nd
0,|k|,|`|≤n

∈ C(n+1)d×(n+1)d .

Direct computation easily shows the factorization T = A∗DA with diagonal matrix D :=
diag(f̂j) ∈ CM×M and Vandermonde matrix

A := An :=
(
zkj

)
j=1,...,M

k∈Nd
0,‖k‖∞≤n

∈ CM×(n+1)d , zj := e−2πitj ∈ Cd,

which is our entry point for the subsequent analysis of the problem.

2.2 Ingham’s inequality

The univariate case is well understood and the popular paper [26] used a so-called Beurling-
Selberg majorant and minorant to prove a discrete Ingham inequality (which has been gen-
eralized to the unit disk recently [2]). Tensorizing the majorant easily gives an upper bound
in a multivariate discrete Ingham inequality but simple attempts to provide a minorant and
thus a lower bound failed, see e.g. [25]. A construction of a valid minorant by linear combi-
nations of univariate majorants and minorants can be found e.g. in [9], these seem to become
effective only if nq > C · d, i.e., show a linear dependence in the space dimension. A similar
bound follows from [22] using localized trigonometric polynomials and a packing argument.
Moreover note that the Fourier analytic approach to sphere packing problems [11, 42] asks for
a similar but not quite the same construction of a function. The classical and currently best
known construction [17, 19, 33] uses an eigenfunction of the Laplace operator on the cube and
becomes effective if nq > 1

2

√
d. Subsequently, we replace the Laplace operator by the sum

of higher order derivatives, improve the previous bound for d > 5, and show a logarithmic
growth of the space dependent constant.

Lemma 2.1. Let d, r ∈ N, p := 2r, n, q > 0, and the functions ϕ : R→ R,

ϕ(x) :=


(

1−
(
2x
q

)2)r
, |x| < q

2 ,

0, otherwise,

and ψ : Rd → R,

ψ =

(
(2πn)p − (−1)r

d∑
s=1

∂p

∂xps

)
d⊗
`=1

ϕ ∗ ϕ,

be given, see Figures 2.1 and 2.2 for examples, then

i) the Fourier transform ψ̂(v) :=
∫
Rd ψ(x)e−2πivxdx is bounded and obeys

ψ̂(v)

{
≥ 0, ‖v‖p ≤ n
≤ 0, ‖v‖p ≥ n,
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ii) suppψ = [−q, q]d,

iii) and ψ(0) > 0 if nq > Cp
p
√
d with Cp ≤ (2p+ 3)/(eπ).

Proof. We have the weak r-th derivative

ϕ(r)(x) =

{
(−1)rq−r4rr!Pr

(
2x
q

)
, |x| < q

2 ,

0, otherwise,

where Pr denotes the r-th Legendre polynomial with normalization Pr(1) = 1. This derivative
is of bounded variation and thus, the Fourier transform of the function ϕ obeys |ϕ̂(v)| ≤
C(1 + |v|)−r−1. Now the first assertion follows from

ψ̂(v) =

(
(2πn)p −

d∑
s=1

(2πvs)
p

)
d∏
`=1

(ϕ̂(v`))
2 .

The second claim easily follows from suppϕ = [− q
2 ,

q
2 ]. Moreover, we have

ϕ ∗ ϕ(0) =
q

2

∫ 1

−1

(
1− x2

)p
dx =

q
√
πp!

2Γ(p+ 3
2)

and noting ϕ(r) being odd for r odd, we get

ϕ(r) ∗ ϕ(r)(0) =

(
4rr!

qr

)2 (−1)rq

2

∫ 1

−1
(Pr(x))2dx =

4p(r!)2(−1)r

(p+ 1)qp−1
.

Finally, this implies

ψ(0) = (ϕ ∗ ϕ(0))d−1
(

(2πn)p ϕ ∗ ϕ(0)− (−1)rd · ϕ(r) ∗ ϕ(r)(0)
)

= (ϕ ∗ ϕ(0))d−1
(

(2πn)p
q
√
πp!

2Γ(p+ 3
2)
− d4p(r!)2

(p+ 1)qp−1

)
> 0,

provided the term in brackets is positive. Using the Legendre duplication formula for Γ(p+2),
this is equivalent to nq > Cp

p
√
d with a constant

Cp :=

Γ
(p
2 + 1

)
Γ
(
p+ 3

2

)
πpΓ

(
p+3
2

)
 1

p

≤
(
Γ
(
p+ 3

2

)) 1
p

π
≤ 2p+ 3

eπ
, (2.1)

where the first inequality follows from monotonicity and the second by Stirling’s approxima-
tion.

Remark 2.2. The construction of Lemma 2.1 for p = 2 reads as

ϕ(x) :=

1−
(
2x
q

)2
, |x| < q

2 ,

0, otherwise,
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leading to

ϕ ∗ ϕ(0) =
q

2

∫ 1

−1
(1− x2)2dx =

8q

15
, ϕ′ ∗ ϕ′(0) = −4q

3
· 4

q2
,

and we get ψ(0) > 0 for nq >

√
5/2

π ·
√
d ≈ 0.5033

√
d.

A minor improvement is possible by choosing the function ϕ : R→ R,

ϕ(x) :=

{
cos πxq , |x| <

q
2 ,

0, otherwise,

which has a distributional 2-nd derivative ϕ′′ = −π2q−2ϕ+ Cδ± q
2

and thus

ϕ′ ∗ ϕ′(0) = ϕ ∗ ϕ′′(0) = −π
2

q2
ϕ ∗ ϕ(0).

Proceeding as in Lemma 2.1, we get ψ(0) > 0 for nq > 1
2 ·
√
d, see also [19, 33].
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(a) Contour plot of ψ, compactly supported in the
dashed square, positive at origin.

−20 −10 0 10
−20

−15

−10

−5

0

5

10

15

(b) Contour plot of ψ̂, positive inside and non-
positive outside the dashed `2-ball.

Figure 2.1: p = 2, d = 2, q = 0.1, n = 10, positive values blue hatched, negative values red.

Remark 2.3. The construction of Lemma 2.1 for p = 4 reads as

ϕ(x) :=


(

1−
(
2x
q

)2)2

, |x| < q
2 ,

0, otherwise,

leading to

ϕ ∗ ϕ(0) =
q

2

∫ 1

−1
(1− x2)4dx =

128q

315
, ϕ′′ ∗ ϕ′′(0) =

64q

5
· 16

q4
,
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and we get ψ(0) > 0 for nq >
4
√

63/2

π · 4
√
d ≈ 0.7541 · 4

√
d.

An alternative choice is the function ϕ : R→ R,

ϕ(x) :=

{
1 + cos 2πx

q , |x| < q
2 ,

0, otherwise,

which has a weak 2-nd derivative of bounded variation

ϕ′′(x) =
4π2

q2

(
χ(− q

2
, q
2)(x)− ϕ(x)

)
and the Fourier transforms obey the bounds |ϕ̂(v)| ≤ C(1+ |v|)−3 and |ψ̂(v)| ≤ C ′. Moreover,
we have

ϕ′′ ∗ ϕ′′ = 16π4

q4

(
ϕ ∗ ϕ− 2ϕ ∗ χ(− q

2
, q
2) + χ(− q

2
, q
2) ∗ χ(− q

2
, q
2)

)
,

ϕ ∗ ϕ(0) = 3
2q, and ϕ ∗ χ(− q

2
, q
2)(0) = q, which yields

ψ(0) = (ϕ ∗ ϕ(0))d−1
(
16π4n4(ϕ ∗ ϕ(0))− d(ϕ′′ ∗ ϕ′′(0))

)
= 3 · 8π4 (ϕ ∗ ϕ(0))d−1 q

(
n4 − d

3
q−4
)
> 0

if nq > 4
√
d/3 ≈ 0.7598 · 4

√
d.

Finally, a minor improvement is possible as follows. Let σ ≈ 2.365 be the first positive root
of cos t sinh t+ cosh t sin t and the function ϕ : R→ R,

ϕ(x) :=

{
coshσ

coshσ−cosσ cos(2σx/q)− cosσ
coshσ−cosσ cosh(2σx/q), |x| < q

2 ,

0, otherwise,

be given, then ϕ solves the biharmonic eigenvalue problem

d4

dx4
ϕ(x) =

16σ4

q4
ϕ(x), |x| < q

2
, ϕ(±q

2
) = ϕ′(±q

2
) = 0.

Globally, we have a 1-st derivative, a weak 2-nd derivative, and distributional 3-rd and 4-th
derivatives. In particular, we have ϕ(4) = 16σ4q−4ϕ(4) + Cδ′± q

2
and thus

ϕ′′ ∗ ϕ′′(0) = ϕ ∗ ϕ(4)(0) =
16σ4

q4
ϕ ∗ ϕ(0).

Proceeding as in Lemma 2.1, we get ψ(0) > 0 for nq > σ
π ·

4
√
d ≈ 0.7528 · 4

√
d.

Theorem 2.4. Let n > 0, d, p,M ∈ N, p even, tj ∈ [0, 1)d, j = 1, . . . ,M , with

min
r∈Zd, j 6=`

‖tj − t` + r‖∞ > q

and nq > 2p+3
eπ

p
√
d, then there exists a constant c > 0, depending only on d, p, n, q such that

∑
k∈Zd

‖k‖p≤n

∣∣∣∣∣∣
M∑
j=1

f̂je
2πiktj

∣∣∣∣∣∣
2

≥ c
M∑
j=1

∣∣∣f̂j∣∣∣2 ,
for all choices f̂j ∈ C, j = 1, . . . ,M .
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(a) Contour plot of ψ, compactly supported in the
dashed square, positive at origin.
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(b) Contour plot of ψ̂, positive inside and non-
positive outside the dashed `4-ball.

Figure 2.2: p = 4, d = 2, q = 0.1, n = 10, positive values blue hatched, negative values red.

Proof. Let the function ψ be as in Lemma 2.1, then

max
v∈Rd

ψ̂(v)
∑
k∈Zd

‖k‖p≤n

∣∣∣∣∣∣
M∑
j=1

f̂je
2πiktj

∣∣∣∣∣∣
2

≥
∑
k∈Zd

ψ̂(k)

∣∣∣∣∣∣
M∑
j=1

f̂je
2πiktj

∣∣∣∣∣∣
2

=

M∑
j=1

M∑
`=1

f̂j f̂`
∑
r∈Zd

ψ(tj − t` + r)

= ψ(0)

M∑
j=1

∣∣∣f̂j∣∣∣2 ,
where the inequality is implied by Lemma 2.1 i), Poisson’s summation formula yields the first
equality, and Lemma 2.1 ii) and the separation of the nodes tj the last equality. Finally, the
assertion follows since Lemma 2.1 iii) assures ψ(0) > 0.

Corollary 2.5. With the notation of Section 2.1, the condition nq > cd, see Table 2.1, or
nq > 3 + 2 log d implies rankAn = M .

Proof. First note that

An =
(
zkj

)
j=1,...,M

k∈Nd
0,‖k‖∞≤n

= diag

(
z
(dn2 e,...,d

n
2
e)

j

)
·
(
zkj

)
j=1,...,M

k∈{−dn
2
e,...,bn

2
c}d

and thus An has rank M if and only if the second matrix on the right hand side has this rank.
Dropping the last column for odd n, this is assured by Theorem 2.4 if nq > 22p+3

eπ
p
√
d, since

∑
k∈Zd

‖k‖∞≤n
2

∣∣∣∣∣∣
M∑
j=1

f̂je
2πiktj

∣∣∣∣∣∣
2

≥
∑
k∈Zd

‖k‖p≤n
2

∣∣∣∣∣∣
M∑
j=1

f̂je
2πiktj

∣∣∣∣∣∣
2

> 0
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d 1 2 3 4 10 16 20 64 100 256

cd 1.0 1.4 1.7 2.0 2.7 3.0 3.2 4.0 4.3 5.0

Table 2.1: Explicit constants cd = 2 minp∈2NCp
p
√
d, see Equation (2.1), or its minor improve-

ments via Remark 2.2 and 2.3.

for f̂ ∈ CM \ {0}. Choosing p := 2dlog de yields the assertion since

2p+ 3

eπ
p
√
d ≤ 2p+ 3

eπ

p
√

e
p
2 =

2p+ 3

π
√

e
≤ 7 + 4 log d

π
√

e
.

Remark 2.6. Corollary 2.5 can also be found in [22, Cor. 4.7] and [33, Lem. 3.1] under the
stronger conditions (n+ 1)q > 2d and nq >

√
d, respectively. Regarding a trivial lower bound

of the constant cd, a d-fold Cartesian product of equispaced parameters in each dimension
consists of M = q−d parameters in total and thus rankA ≤ (n + 1)d < M if (n + 1)q < 1.
Moreover, a non-trivial lower bound in [29, Section 5.7] indicates that functions as in Lemma
2.1 necessarily imply that the constant cd tends to infinity for d→∞. Going beyond the rank
of the Vandermonde matrix An and considering its condition number or equivalently upper
and lower bounds in the Ingham inequality, [22, Cor. 4.7] implies a uniform bound

κ(AnWA∗n) ≤ 1 +
2(2d)d+1

((n+ 1)q)d+1 − (2d)d+1
≤ 2

for each q-separated parameter set with (n + 1)q ≥ 4d and a certain diagonal preconditioner
W . On the other hand, every weaker condition (n+ 1)q ≤ c · d1−ε, c > 0, ε ∈ (0, 1), implies
at least a subexponential growing condition number, since [22, Cor. 4.11] leads to

κ(AnA
∗
n) =

(
d(n+ 1)qe
b(n+ 1)qc

)d
≥
(

1 +
1

(n+ 1)q

)d
≥ exp

(
dε · c−1 · log 2

)
for equispaced nodes with (n + 1)q 6∈ N. For a numerical example, let d = 256 and consider
equispaced nodes with N 63 (n + 1)q ≈ 4.98 ≈ c256 - while Corollary 2.5 assures full rank of
An, we have κ(AnA

∗
n) = (5/4)256 ≥ 1024.

2.3 Prony’s method

As outlined in Section 2.1, Prony’s method tries to realize the unknown parameters zj as
common roots of d-variate polynomials belonging to the kernel of the multilevel Toeplitz
matrix Tn. In [21], we provided the well-known a-priori condition n > M which however
implies the need of O(Md) trigonometric moments for the reconstruction of M parameters.
We improved this in [20] to the a-priori condition (n − d − 1)q > d3/2 using Gröbner basis
arguments and a variant of the flat extension principle [12, 23]. This allows for the reconstruc-
tion of M well distributed parameters from O(M) trigonometric moments but the constant
deteriorates with larger space dimension. Subsequently, we refine a variant of the flat ex-
tension principle to our max-degree setting and give a simple linear algebra proof. Together
with the improved Ingham inequality, Prony’s method succeeds under the weakened condition
(n− 1)q > 3 + 2 log d.
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Lemma 2.7. With the notation of Section 2.1, if rankAn = rankAn+1 for some n ∈ N0,
then rankA` = M for all ` ≥ n.

Proof. Let r := rankAn and pick k1, . . . , kr ∈ Nd0 with ‖ki‖∞ ≤ n such that the matrix

B := (zkij )j=1,...,M
i=1,...,r

∈ CM×r

has rank r. Subsequently, we let m ∈ Nd0, m /∈ {k1, . . . , kr}, ‖m‖∞ ≤ n+ 2 and

Bm := (B, (zmj )j=1,...,M ) ∈ CM×r+1.

If ‖m‖∞ ≤ n+1, then Bm is a submatrix of An+1 and r = rankB ≤ rankBm ≤ rankAn+1 = r
by assumption. If ‖m‖∞ = n+ 2, then m = s+ k, ‖s‖∞ = 1, ‖k‖∞ = n+ 1, implies

zmj = zsj · zkj =
r∑
i=1

ciz
s+ki
j , ci ∈ C, ‖s+ ki‖∞ ≤ n+ 1,

and thus (zmj )j=1,...,M is linear dependent on the columns of An+1 and thus on the columns
of B, i.e., rankBm = r. This shows rankAn+2 = r and inductively rankA` = r for all ` ≥ n.
Finally, the space ΠM of polynomials of max-degree at most M interpolates any set of M
points and thus rankAM = M and r = M .

Theorem 2.8. With the notation of Section 2.1, if rankAn = M , then V (kerAn+1) =
{z1, . . . , zM}.

Proof. Clearly, “⊃” holds. To prove the reverse inclusion, assume that there is a

z0 ∈ V (kerAn+1) \ {z1, . . . , zM} .

For ` ∈ N0 consider the matrix

C` := (zkj ) j=0,...,M
k∈Nd

0,‖k‖∞≤`
∈ CM+1×(`+1)d ,

i.e. A` extended by the row (zk0 )‖k‖∞≤`. We show that kerC` = kerA` for all ` ≤ n + 1.
The inclusion “⊂” is clear. Let p ∈ kerA`. Since ` ≤ n + 1, we can consider p as an
element of kerAn+1, which, by assumption, yields p(z0) = 0. By the definition of C` we
have C`p = 0 (considering p as an element of kerA` again). Thus kerC` = kerA` for all
` ≤ n + 1, and therefore rankC` = rankA`. In particular, rankCn = rankAn = M and
rankCn+1 = rankAn+1 = M , thus rankCn = rankCn+1. By Lemma 2.7 we have rankCn =
|{z0, . . . , zM}| = M + 1, a contradiction.

Remark 2.9. Inspection of the proofs readily shows that the results of Lemma 2.7 and The-
orem 2.8 hold for arbitrary pairwise different zj ∈ Cd. The Vandermonde matrix An is the
representation matrix of the evaluation homomorphism which maps a polynomial to its values
at the prescribed points zj. In algebraic geometry and with the max-degree replaced by the total
degree, the rank of such maps is called Hilbert function. It is well known that such a func-
tion is strictly increasing with n up to stagnation at the value M , see e.g. [40, App. B]. The
previous Lemma 2.7 shows by elementary arguments that this is true also for the max-degree.
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Corollary 2.10. With the notation of Section 2.1, the condition (n−1)q > cd, see Table 2.1,
or (n− 1)q > 3 + 2 log d implies V (kerTn) = {z1, . . . , zM}.

Proof. Corollary 2.5 implies rankAn−1 = M and thus V (kerAn) = {z1, . . . , zM} follows from
Theorem 2.8. Finally note that always kerAn ⊂ kerTn and equality follows from rankAn = M
since p ∈ kerTn implies Anp ∈ ker(A∗nD) = im(D∗An)⊥ = {0} and thus p ∈ kerAn.

3 Summary

We have shown that Prony’s method identifies a Dirac ensemble from its first moments pro-
vided an associated Vandermonde matrix has full rank. This is indeed fulfilled if the number
of given coefficients exceeds a constant divided by the separation distance of the unknown
parameters. Explicit bounds for the involved constant grow logarithmically in the space
dimension and improve over previous constructions also for small space dimensions.
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[13] B. G. R. de Prony. Essai éxperimental et analytique: sur les lois de la dilatabilité de
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