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Nonequispaced fast Fourier transformswithout over sampling

Stefan Kunis*
Chemnitz University of Technology, 09107 Chemnitz

Recently, the fast Fourier transform (FFT) has been gesethfor arbitrary sampling nodes by the use of approximatio
schemes. We show that such nonequispaced FFTs can be inmpéehwéthout oversampling, i.e., no extra memory besides
the input and output array is needed.
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1 Introduction

Without doubt, the fast Fourier transform [1] belongs to &hgorithms with the greatest influence on the developmedt an
practice of science and engineering. It has become of gmgadrtance in scientific computing with applications in thgi
signal and image processing as well as in the numericalisolof differential and integral equations. Two shortcogsrof
traditional schemes are the need for equispaced samplahtharrestriction to the system of complex exponential fiomst

Both problems have attracted much attention and led to thelalement of nonequispaced FFTs [2—6]. The common concept
in such schemes is to trade exactness for efficiency; ingteptecise computations up to machine precision, the pregbos
methods guarantee a given target accuracy.

State of the art approaches for nonequispaced FFTs relpailgon an oversampled FFT and a dedicated approximation
scheme. If the input and output arrays just fit into the maimagy, these methods are no longer applicable. Without over-
sampling, the accuracy of these methods cannot be comtianiié numerical experiments indeed show that the approximat
fails. We generalise the approach [7] and give error bouadthie case of no oversampling and even undersampling. The
number of floating point operations of the new method is witbgarithmic terms slightly worse than for the aforemend¢id
algorithms.

2 Local Taylor seriesexpansions

Let an even bandwidtlV € N, a vector of Fourier coefficienfse C, and the trigonometric polynomidl : [— % %) — C,
J-1
f(.%') _ Z f e—27rlkm
=%
be given. Moreover, leM € N and a set of sampling nodes € [—2 5 2) j=0,. — 1, be given. The nonequispaced

discrete Fourier transform is defined as the evaluation ®@tiiyjonometric polynom|af at the nodes:;. We collect these
samples in the vectdre CM, fJ f(xj),j= 0 , M — 1, and denote the nonequispaced Fourier matriAby CM >V
aj = e ke | = —%, ceey 2 -1,7=0,. — 1. Thus, the nonequispaced discrete Fourier transform remgpelse
than the matrix vector produ€t= Af, which obV|oust take®) (M N) floating point operations. Nonequispaced FFTs [5]
reduce this taD(N log N + |loge| M), wheree denotes the accuracy of the result. We generalise [7] antbzippate f
locally by a multivariate or two point Taylor polynomial. Araightforward error analysis yields the following simpésults.

Theorem 2.1 Let f be a trigonometric polynomial of bandwidih € Nandx € [ 55 2) be an evaluation node. Moreover,
let an under- or oversamplmg fact@r >0 W|th the corresponding FFT-length = o N € N, a cut-off parametem € N,
and the lattice pointy; = -,/ = —5,..., 5, be given.

1. Let f and its firstm — 1 derivatives be evaluated at the nearest lattice pginty; — x| < |y, —z|forall r = -3, ...

The Taylor expansion aboyt obeys
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2. Letz € [y, yi1+1], then the two point Taylor expansion abguandy; 1, i.e.,
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Theorem 2.2 Now let f be a multivariate trigonometric polynomial of multibandit N = (Ny,..., N;) € N and
X € [—5, 5) an evaluation node. Moreover, let an under- or oversampléugor o > 0 with the correspondmg FFT-length
n = oN e N¢, a cut-off parametein € Ny, and the lattice pointg; = (ll ,...,nd), hh = =%, ..., % 5la =
—%, ..., 5t be given. Letf and its partial derivatives of order at most — 1 be evaluated at the nearest Iattlce point
The Taylor expansion abog obeys

fo0— Y Py < Iy
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If o > 0isfixed, the single point Taylor expansion based nonequepBFT takes for accuraey> 0, for a total number of
N = N;-Ns-...-Ng Fourier coefficients, and fav/ sampling nodes oni@(| log £|?( N log N+ M)) floating point operations.
The (univariate) two point Taylor expansion based nongrguied FFT would také(| log | N log N + |log ¢|?M)) floating
point operations, which can be reduced byfaimdependent preprocessing step to the above complexity.

The striking point however is the fact that without any oaenplingoc = 1 these algorithms are exponentially accurate
with increasingn. This fact is in sharp contrast to the window-based nonegueisd FFTs [2-4].
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Fig. 1 Errormax; |f(z;) — fm(2)|/ Sk | /x| for increasing cut-off parameten = 0, ..., 19 and Gaussian window function (solid),

single point Taylor expansion (dotted), and two point Taggrpansion (dashed). The number of Fourier coefficientsta@aumber of
nodes aréV = M = 1024.
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