On the stability of the hyperbolic cross
discrete Fourier transform
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A straightforward discretisation of problems in high dimensions often leads to
an exponential growth in the number of degrees of freedom. Sparse grid approx-
imations allow for a severe decrease in the number of used Fourier coefficients to
represent functions with bounded mixed derivatives and the fast Fourier transform
(FFT) has been adapted to this thin discretisation. We show that this so called
hyperbolic cross FFT suffers from an increase of its condition number for both
increasing refinement and increasing spatial dimension.
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1 Introduction

A straightforward discretisation of problems in d spatial dimensions with 2" grid points in
each coordinate leads to an exponential growth 29" in the number of degrees of freedom.
Even an efficient algorithm like the d-dimensional fast Fourier transform (FFT) uses C2%dn
floating point operations. This is labelled as the curse of dimensions and the use of sparsity
has become a very popular tool in such situations. For moderately high dimensional problems
the use of sparse grids and the approximation on hyperbolic crosses has led to problems of
total size C32"n%"1. Moreover, the approximation rate hardly deteriorates for functions in
an appropriate scale of spaces of dominating mixed smoothness, see e.g. [14, 16, 11, 10, 13, 2,
12, 15]. The FFT has been adapted to this thin discretisation as hyperbolic cross fast Fourier
transform (HCFFT), which uses C42"n? floating point operations, in [1, 9, 7], see also [5] for
a recent generalisation to arbitrary spatial sampling nodes and [4] for the associated Matlab
toolbox.

In this paper, we consider the numerical stability of the hyperbolic cross discrete Fourier
transform, which of course limits the stability of a particular and potentially fast algorithm
like the HCFFT. While the ordinary discrete Fourier transform is up to some constant a
unitary transform and thus has condition number one, its hyperbolic cross version suffers
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n\.d 2 3 4 5 6 7 8 9 10

2.00 3.73 6.34 | 9.90-10° | 1.44-10' | 1.99-10* | 2.65-10' | 3.40-10% | 4.25- 10"
3.24 9.49 | 22.84 | 4.71-10" | 8.72-10' | 1.49-10% | 2.41-10% | 3.72-10% | 5.52- 10>
5.15 19.43 | 60.79 | 1.58-10% | 3.57-10% | 7.34-10% | 1.40-10% | 2.51-10% | 4.29-103
8.08 | 36.21 | 135.74 | 4.26-10% | 1.15-10% | 2.78-10% | 6.14-10% | 1.26-10* | 2.45-10*
12.53 | 63.85 | 272.26 | 1.01-10° | 3.17-10% | 8.82-10% | 2.22-10* | 5.16-10* | 1.12-10°
19.21 | 108.72 | 518.01 | 2.17-10% | 7.80-10° | 2.46-10* | 6.98-10* | 1.81-10° | 4.38-10°

ST W N~

Table 1.1: Condition number of the hyperbolic cross discrete Fourier transform.

from an increase of its condition number for both increasing refinement n and increasing
spatial dimension d. We illustrate this behaviour in Table 1.1, which shows that already for
spatial dimension d = 9 and a refinement n = 4 the HCFFT looses four digits of accuracy
for a worst case input. As a rule of thumb for fixed dimension, the condition number at least
doubles whenever the refinement is increased by two.

The paper is organised as follows: After introducing the necessary notation and collecting
basic facts about the hyperbolic cross and related sets, we discuss the interpolation of functions
by trigonometric polynomials. By convenience, we use the term “ordinary Fourier matrix”
for the full grid case and reserve the short hand “Fourier matrix” for the hyperbolic cross and
sparse grid case. We start by the interpolation on a full grid which leads to a trigonometric
polynomial of an appropriate multi-degree and give the well known formulation as discrete
Fourier transform, i.e., as matrix vector product with the ordinary inverse Fourier matrix.
Subsequently, we consider the interpolation on the sparse grid which leads to a trigonometric
polynomial on the hyperbolic cross. Since the interpolation operator has a Boolean sum
decomposition, the associated inverse Fourier matrix allows for two similar decompositions
in ordinary inverse Fourier matrices as well. In particular, this yields upper bounds for the
norm of these inverse Fourier matrices, cf. Lemmata 2.3 and 2.5. We proceed by computing
the Fourier coefficients of the Lagrange interpolant, interpolating one at the origin and zero
at all other sparse grid nodes in Section 2.3 - which yields lower bounds for the norm of
these inverse Fourier matrices. The main results of this paper are estimates on the norms of
the Fourier matrices and their inverses in Theorems 3.1 and 4.1 for fixed spatial dimension
and fixed refinement, respectively. These results are refined in Lemmata 3.4 and 4.4 for
d =2 and n = 1, respectively. All theoretical results are illustrated by a couple of numerical
experiments. Finally, we conclude our findings in Section 5.

2 Prerequisite

Throughout this paper let the spatial dimension d € N and a refinement n € Ny be given. We
denote by T¢ = [0,1)? the d-dimensional torus and consider Fourier series f : T¢ — C, f(z) =
Y kezd f;ceQ’”’cm with Fourier coefficients fk € C. The space of trigonometric polynormals HJ,

_7 € NO, consists of all such series with Fourier coefficients supported on GJ = xfl 1Gjl,
GJ =7ZnN (=271, 27 ie., f: T? - C,

— Z fke27rik:1: ]
kEéJ’

A well adapted spatial discretisation of trigonometric polynomials relies on the full spatial grid
Gj = xleGjl, Gj =279(ZnN[0,27)). If all refinements are equally set to j; =n, [ =1,...,d,



this yields 29" degrees of freedom in frequency as well as in spatial domain.

2.1 Hyperbolic cross and sparse grid

For functions of appropriate smoothness, it is much more effective to restrict the frequency
domain to the hyperbolic cross

Hi:= |J Gi={keGj:ljll=n} CGnx..xG,cCZ (2.1)
31l =n
jeNd
see Figure 2.1(a). This leads to the space II® of trigonometric polynomials on the hyperbolic
cross, i.e., f: T¢ — C,

fl@) =Y fue™™he

keHZ

Here, an appropriate spatial discretisation is given by the sparse grid

d . d
St= | Gi={zecq;:|ljl,=n} CGpx...xGyCTY, (2.2)
l3]l,=n
jeNd
see Figure 2.1(b). For notational convenience, we set H?, := §¢, := G_; := G_; := 0. An
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(a) Hyperbolic cross HZ C Z>. (b) Sparse grid S C TZ.

Figure 2.1: Two dimensional hyperbolic cross and corresponding sparse grid.

immediate consequence of (2.1) is the partition
HY = | JHIL < (Go\ Goon). (2.3)

We proceed by two lemmata on the cardinality of the hyperbolic cross and related sets.

Lemma 2.1. For d,n € N, we have the cardinality estimates ‘Hél‘ = |Sg} =1,
min(n,d—1) onpd—1 n,,d—2
Si=Hl = 3 2 (”) (d, 1) _ i@y + ORI for fired d 2 2
o J J CfL—! +O(@d™ 1) for fized n,



and

d—1 )
y gt ( nol )
— n—j j
=0

‘H,‘f\Hff_ ‘_ ; ( )

In particular, this yields

i) ’Hff \ Hg_1’ > % — O(2"n%2) for fized d € N and n > d, and
i) |[H3\ H%,| =1 and |[H2\ H2_;| = (n+3)2""2 forn >0 and d = 2.
Proof. The cardinality estimate for the hyperbolic cross and the sparse grid is well known

and can be found for example in [9]. Regarding the set differences, we only consider n < d
since the other case follows analogously. Due to H,,‘f_l C Hff, we compute

st E(3) () B (45 ()
:§2n—1—j<d;1><2(?>_<n;1>>+<d;1>

n—1 .
=~ i )n—=j\ J n

The asymptotic estimate i) can be seen from the summand j = d — 1, ii) can be computed
explicitly. |

Lemma 2.2. Let d € N, n € Ny, and k € Z? be given and set {(k) := min {l € Ny : k € H{'}.
Then we have

—l(k)+d—-1
L T (k) <n,
{mENO.HmHl—nandk:EGm}’— d—1

0 otherwise.
Proof. First note that each k € Z¢ allows for exactly one I € Ng with k; € élj \Glj—l,
j =1,...,d. Moreover, this multi-index fulfils ||I||; = £(k) and thus k € G, if and only if
mj =1lj+1j,r; €Np, j=1,...,d. In summary, we obtain

{m e NG : ml =n and k € Gum}| = |{r € N{ s [rlly = n — £(R)} |,

from which the assertion follows by simple combinatorics. |



2.2 Operators and associated matrices

Interpolation operators typically take samples at certain sampling nodes and construct a
function from a particular linear space which can be represented by its expansion coefficients.
Hence, the linear map from sample values to expansion coeflicients and vice versa is given by
a matrix which is of interest. We start by reviewing the classical trigonometric interpolation
on the full grid. For d € N, j € N¢, and continuous functions f € C(T?), we define the
interpolation operator Z; : C(T?) — II; by the conditions

Zif(x) = f(x), x € Gj.

Clearly, we have 7; = 7;, ® ... ® Z;, and

A ) . 1 .
ij(m) — Z f“j7ke27ﬂk5it:7 fj,k: M Z f(m)ef%nk:z:'

keG; e

Moreover, the discrete Fourier coefficients coincide with the Fourier coefficients for trigono-
metric polynomials of multi-degree 27, i.e., fjr = fk, k € Gj, for f € II;. In matrix vector
notation, i.e.,

~

Fi=Uikhee, €T f = (fa)aca, = (F(®))aeq, € T,

we have )
;o -1 -1 _ —orikx X
fi=F;'f, F; = |G-|(e )kecj,meej’
J
where
L 2rikax R ) .
Fj:= (e )mecj,kecj =F; ®...0F;,

denotes the ordinary Fourier matrix.

Next, we turn to the trigonometric interpolation on the sparse grid, see the monograph
[3] for an introduction. In what follows, the interpolation operator allows for a Boolean sum
decomposition which is used for analysing the associated Fourier matrix. For d € N, n € Ny,
and continuous functions f € C(T%), we define the interpolation operator £2 : C(T¢) — IIhe
by the conditions

Lof(x) =fx), zes
This time, we have the Boolean sum decomposition
d
L= D %

jeNd
lFlli=n

and A ' A
Lif(x)= D" fre®™*=  f=(Fi)7'f,

keHd

for all trigonometric polynomials on the hyperbolic cross f € TII¢, where

Fp o= ("T5%) e

n’

keHZ



denotes the Fourier matrix and we drop the superscript for d = 1. Moreover, the interpolation
operator fulfils the well known relation

n n—1
=3 L, ;9L =Y T ;0L (2.4)
j=0 j=0

which gives rise to the following result.

Lemma 2.3. Let d € N, d > 2, and n € Ny, then the inverse Fourier matrices fulfil ||[F,;!||3 =
27" and

I(F7) 1H2<ZIIF G2l FTH 72 +Z||Fn 1l CFFH e

Proof. Each individual summand Z,_; ® E?_l in (2.4) takes samples only from the set
Gp—j X S;l_l C S? as its input and produces a certain trigonometric polynomial with Fourier
coefficients supported only on the set Gj,—; X H;-lfl C Hg For subsequent use, let X C Sﬁ,

Y C HZ?, the restriction matrix P%(X) € RIXIXISil and the extension matrix Q%(Y) €
RIFAIXIY

fe kev,

d _ d £\
(Pn(X)f)a: = fa:; T e X, (Qn(Y).f)k = {0 kc Hg\Y,

be given. Thus, the inverse Fourier matrix allows for the representation

QUG x I (Fi @ (F)1) PGy x S11)
7=0

- Z QL(Glyr—j x HITY) (Fnll ® (F;H)—l) P(Grrj x 571,

Since the restriction and extension matrices have norms bounded by one, the triangle inequal-
ity yields the assertion. |

Example 2.4. The decomposition of the previous Lemma, for d =2 and n =1, is

- 1 0 1 1
1 0 -1
= Ql(Gl X Go) (F ®Fal) P%(Gl X Go)
+Q1(Go x Gh) (Fy' @ ') PY(Go x G1)
— Q3(Gy x Go) (Fy* @ Fy'') P3Gy x Go)
1 1 0 Lft 01 10 0
=5 {1 -1 of+5(00 o]0 00
0 0 0 10 -1 000

which yields by the triangle inequality the norm estimate

_ _ _ _ 1
L= [[(FD ™ 2 < IED ™ 2+ 1EFD ™ 2+ 1(Fo) 1H2=72+72+1=1+\/5~



Similar to the combination technique for sparse grids [8, 6], we have the following result
for sums of interpolation operators of a specific level and their associated matrices.

Lemma 2.5. Ford € N, n € Ny, let the matrices Ez € CHRIxIS- l‘ [=0,...,min(n,d—
1) be given by

= > Qi (GHF;'PI_(G;),
jend
llFll1=n—I

where the restriction matrices P%_, and the extension matrices Q%_, are given as in Lemma
2.3. Then, the inverse Fourier matrix allows for the decomposition

min(n,d—1)

Fy =Y o (1)) el g pisi)

=0
In particular, this yields the norm estimate
min(n,d—1)

ezt (7Y (TR )

=0

|~

Proof. We define the operator o : C(T9) — TIhe,

>

jeNd
lFll1=n

which fulfils the recursion

I IENEE AL ST A

1=0 jend-1
ll3ll1=t

Moreover, the interpolation operator obeys L. = Z,, = ¢} and the relation
min(n,d—1) d—1
d ! - d
L, = Z (—1) < l ) On—i
=0
which is proven by induction over d € N using (2.4) in

n n—1
LE=N"T, ;0L = T, ;0L
=0 j=0

min(n,d—2) n
- X X ()T
mln(n 1d2n1

> Z ( >Inlj®ad1



min(n,d—2) min(n,d—1)

=Y o () X e (0] ) et

=0

d—1
Z?:o(—l)l ( ) Uz,l, n<d-—2

B d—1
d—2 _
1=0 (=1)! ( ) Ui_l + (-1)? lgle_d“, n>d-1

min(n,d—1)

_ Z (—1)l<d;1)ag_l.

=0

Since £% and (F2)~! are the matrix representations of the operators ¢ and L&, respectively,
the assertion follows. The norm estimate finally is due to

min(n,d—1)

IFED M2 < > < o ) =2,

=0

and

d -1 oI n+d—1
e N e ]
jeNd

[3lli=n

2.3 A Lagrange interpolant

We proceed by applying the decomposition from Lemma 2.5 to a particular vector of samples
in order to get a lower bound for the norm of the inverse Fourier matrix. The specific samples
belong to the Lagrange interpolant, interpolating one at the origin and zero at all other sparse
grid nodes. We have the following estimates on its Fourier coefficients.

Lemma 2.6. Let d € N, n € Ny, and e € R'Sg‘,

1, forx =0,
Ex =
0, forx e S\ {0},

denote the first unit vector. The Fourier coefficient vector é = (F%) e € CHl fulfils

min(n—{(k),d—1)

e=2" Y (—2)l<d;1>(n_l_§(f)l+d_l>,

1=0
see also Lemma 2.2. In particular, we have
i) ép=2""forke HI\ HI |,

i) &g = {2 for g =2, and

iii) |éo| > |5 — O(d"1)| for fixed n € Ng and d > n.

nl2n



Proof. The individual summands in the decomposition of Lemma 2.5 can be computed for
1=0,...,min(n,d—1), j € N&, ||l5]l1 =n — I, and k € G; explicitly as

(17;113i44((?j)l’Z(SﬁAJ)e)k =2

Denoting by 1 = (1,...,1)" € R2"™" the vector of all ones, this yields

min(n,d—1)

. d—1 o
(o= | X cuo (et ¥ @l
1=0 jeNd
lgT=n—1 .
min(n,d—1)
Y d—1Y)],. . .
_9 (—2)1( z )‘{JeNg:HJHl:n—landkEGj}‘

_on | ) (_2)l<d;1><n—l—§(ic)1+d—1>

where the last equality follows from Lemma 2.2. We evaluate this sum for the special cases
i)-iii). Since k € H?\ H?_, yields ¢(k) = n, the above sum contains only one summand for
[ = 0 and 1) follows. The second assertion, i.e. d = 2, follows for n = ¢(k) from i) and for
n > ((k), the above sum yields

n—L0k)+1 n—40lk) (k)—n+1
on on—1 on :

Finally, we show iii) by

= R () ()
< (1) ettty
= | o]

3 Fixed spatial dimension

Our main result on the norms of the Fourier matrix and its inverse are given for fixed spatial
dimension in this section, while the discussion of fixed refinement and increasing spatial
dimension is postponed to Section 4. After the above preparation, we are ready to prove the
following asymptotic estimates.



Theorem 3.1. Let the spatial dimension d € N, d > 2, be fixed. For n € N, n > d, the
following bounds are valid

1 n d=2 n, 4=3 d 1 ndel 4o
N e — 0@ ) < |Fylle < gy —qy2'n ™ + 02" )
and
d—1
1 R no de 5 4 1)d-1 pd—1 ;
; N o (2 ) < F e < 2T D o (2 82).
28,/(d—1)! 22 d—1) 25

Proof. The upper bound for the norm of the Fourier matrix easily follows from ||[Fd|y <
|Fe||lp = |H%| and the first relation in Lemma 2.1. Moreover, let f € RIHal,

; 275 ky=...=ky=0,
k1Ko, kg = )
DRzt 0 otherwise,

and f = F?f be given, then || f|l2 = 1 and

277,71 277,71 22 O
_n i _n i 2 T =

fey=—2n—141 hi— 2141 0  otherwise.

Thus, the lower bound for the norm of the Fourier matrix is due to || F%||3 > || f||3 = 27|54

The upper estimate for the inverse Fourier matrix is due to Lemma 2.3 and an induction
argument over d € N. For d = 1 and all n € Ny we have [|[(F,)"|2 = 272 and using the
Boolean sum decomposition, we proceed inductively by

n n—1
IED M 2 < Y N EFng) M 2l (FS 7 2+ D I (Fnery) 2l (FGH o
j=0 =0
2+1)2 [ . =, .
ﬁ(\[i)g Z(]+d—2)d2+\/§Z(j+d—2)d2
(d—2)122 — —
j= J=
9 1 d—1 n+1
< WL/ (j+d— Q)d_Zdj
(d—2)122 Jo
_ (V2T d -1t
- (d—1)122 '
Finally, consider the first unit vector e = (1,0,... ,0)T € RIF: whose Fourier coefficient
vector é = (Fd)~le fulfils
d d d—1
dy—1112 112 A 12 |Hn\Hn—1| n —n, d—2
DB e3> 30 el = gt 2 gy - 07 )
keHI\H?_,
due to Lemmata 2.6(i) and 2.1(i). [ |

10
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(a) Lower order term of ||[F2||2 (b) Lower order term of ||(F2)™!||2

Figure 3.1: Lower order term of the norms and asymptotic bounds for the Fourier matrix and

its inverse for spatial dimension d = 3 and increasing refinement n, cf. Theorem
3.1.

Corollary 3.2. For fixed spatial dimension d € N and increasing n € N, the condition number
of Ffl scales approximately like the \/|H%|, more precisely the following bounds are valid

n 2d—3

Q(2:n 7 ) < condy F4 < O(22n2472),

The growth of the condition number with increasing refinement is illustrated in the following
Figure 3.2. Beyond the estimate from Corollary 3.2, the condition number increases at higher
rates for refinements that are small compared to the spatial dimension.

24} s d=45]

22 »d=2H

20} o
_ b a=12
B E 16l - d= 8
\'g/ 14} ;‘d=6-
8 12} ..d=5]
N =

o T d=2]

sk o]

ak-

ok

% 2 ; 6 8 10 12 4

d
log,|H |

Figure 3.2: Condition number of the Fourier matrix and its inverse for fixed spatial dimension

and increasing refinement n. We expect logcondy Fe ~ %log |HY| for large n,
cf. Corollary 3.2.

11



Improvements for d = 2

Theorem 3.1 can be refined for the two dimensional case. In particular, we present an identity
for the norm of the Fourier matrix and non asymptotic bounds on the norm of the inverse
Fourier matrix. However note, that our numerical results in Table 3.1 indicate that the upper
bound is not order optimal, see also Figure 3.1(b) for the three dimensional case. We start
with the following simple auxiliary result.

Lemma 3.3. For n € N the following identity is fulfilled
n
D k+3)2F 2k +1-n)?=2"(n—-1)+2— (n— 1)~
k=1
Proof. Summation by parts yields
k—2 _ -1 k—2 _ on—1
> k2 =n2n —5—22 =2 -1+,
k=1 k=2
and analogously

13

Zk22k 2o l(n?—2n43) - ZkSQH:2”*1(n3—3n2+9n—13)+?,

3
2 )
from which the assertion follows. [ |

Lemma 3.4. For n € N the estimates from Theorem 3.1 can be refined to

Vvn—1 _ V2+1)n+1
IRl =2, Y s ) < 2L

22

Proof. Let f € CHal || £l2 = 1, be arbitrary and set § € C2" to

§ _ fkl,kg (k1, ko) " € HZ,
ke 0 (kl, kg)T S Gn,n \ Hr2z

Moreover, let f = F2f and g = F, ® F,§, then
IF2F15= D 1fal® = D lgal® < D 19al* = [ Fn @ Fuglls = | Fr ® Folf3 = 4™
xeS?2 xeS? z€Gnn

The three remaining estimates follow along the same lines as in Theorem 3.1. The lower
bound for the Fourier matrix is due to ||[F2||2 > 2"|S}| = 47. The upper estimate for the
inverse Fourier matrix follows from

n—1
_ n—|—1 n
I(F2)~ 1|!2<§ IF; 2l E e+ > IF 2l Foly e = +2
Jj=0 j=0

n—1"

Finally, the lower bound on the inverse Fourier matrix uses again the first unit vector e =
(1,0,...,0)T € Rzl which yields in conjunction with Lemmata 2.6(ii), 2.1(ii), and 3.3

IE2) = Z T el = (n—1)?+ 357, +3)2 2 —n+1)> _ 2"(n—1) +2

- 922n 922n

=0 ke H?\H? |

from which the last assertion easily follows. |

12



n 4 5 6 7 8 91 10| 11] 12
[(F2)~Y2 | 0.500 | 0.388 | 0.298 | 0.226 | 0.171 | 0.128 | 0.096 | 0.071 | 0.053

Qnél 0.433 | 0.354 | 0.280 | 0.217 | 0.165 | 0.125 | 0.094 | 0.070 | 0.052

% 2.664 | 2.311 | 1.935 | 1.582 | 1.270 | 1.004 | 0.786 | 0.609 | 0.468

Table 3.1: Matrix norms of (F2)~! and their bounds from Lemma 3.4.

Remark 3.5. Note that the upper bound on the Fourier matrix is improved by an order
of magnitude for d = 2, but the applied technique gives the suboptimal estimates ||F%||o <

“@?:11711”2:2%‘1 for d > 2. O

4 Fixed refinement

The second main result on the norms of the Fourier matrix and its inverse are given for fixed
refinement and increasing dimension.

Theorem 4.1. Let the refinement n € N be fixed. For spatial dimension d € N, d > n, the
following bounds are valid

d"” dn
7=y Odn“ <||F¢ <——i—(’)d”l
and
d" n-1 dy—1 (2+v2)"d _—
— < < X ) ]
g~ O ) < I(FR) e < 5+ 0(d"™)

Proof. The upper bound on the Fourier matrix can be shown as in Theorem 3.1, i.e., | F¢ |, <
|Fe||r = |[HZ| and by using the first relation in Lemma 2.1. Now, let fe R‘H | fk =1, be
given and set f = F¢ f Using the partition (2.3) of the hyperbolic cross and the shorthand
notations

kT = (kik]) = (kJk), k1 € Z, k1 € 277, kg € Z", k, € 2077,
(:L'OT:BZ), 1 €T, ¢ € T, 2y €T, x, € T4,
Gj= (éjl \Gjl—l) XX (Gjn \ @jn—l) cZ", jeNg,

8
|
£
8
I

we obtain

n
fw: § : e27rik:l:: § : § : 6271‘1]61.’171 § : 27rik1:z:1

ke, 1=0k1€65)\Gjy 1 ke €H, 5
n
— Z Z Z e27‘(’ik0m0 Z e27rik:n:1:n.
=0 JENG koeGy kncHI™!

ll31l=l

13



Since € S¢ implies € G with j € N¢ and ||5]|; = n, at most n components of j are
nonzero. Hence, at most n components of € S? are nonzero and without loss of generality
let 2, = (Tp41...74) " = 0. In conjunction with the estimates

Z e271'ik30:l:0 — 1’ Z Z eZWikoazo < C?’Ly 1 < I < n, @y € Tn,
kocGo JjeNg koEéj
ll3ll=l

with some constant C), independent of d, the sample values finally obey

-n - -n d" n—
| fa| = |Hg | — CnZ‘Hg—l =— -0 1)

n!
=1

for all € S2. Thus || £ > (d"/n!)® — O(d*!) and the lower bound on the Fourier matrix
follows from [[Fyll2 > || £ll2/[1£]2-

Applying Lemma 2.5, yields the following upper bound on the inverse matrix

_ 1 ~(d-1 n—l+d—1Y,.
IFD s > () (i)
=0

1 n
:WIZ:;( z )(d—l+n—1)---(d—l)2

(d+n—-1)" - ( n ) 1
< —— 2
- nl22 lz(; l ’
2+2)"dn
— & + 0@ ).

nl2n

N~

Finally, the lower bound on the inverse Fourier matrix uses again the first unit vector
d . . ~ ~ — .
e =(1,0,...,0)" € Rl whose zeroth Fourier coefficient ég, &€ = (F%)~le, yields

mn

IFD) 2 > 12 > éo > —Oo@d")

nl2n

due to Lemma 2.6(iii). [ |

Corollary 4.2. For fixed refinement n € N and increasing spatial dimension d € N, the
condition number of F¢ scales approximately like the |H%? more precisely the following
identity is valid
condo F4 = ©(d*™).
The growth of the condition number with increasing refinement is illustrated in the following

Figure 4.1. Beyond the estimate from Corollary 4.2, the condition number increases at slightly
lower rates for spatial dimensions that are small compared to the refinement.
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Iogz|cond(F )|

Figure 4.1: Condition number of the Fourier matrix and its inverse for fixed refinement and
increasing spatial dimension d. We expect log conds F¢ ~ 2log |HY| for large d,
cf. Corollary 4.2.

Improvements for n = 1

Theorem 4.1 can be refined for the case n = 1. In particular, we give a representation of the
Fourier matrix and its inverse as rank-2 perturbation of a multiple of the identity matrix.
This gives precise information on the eigenvalues and thus on the norms of the matrices in
Lemma 4.3. We start with the following observations for the hyperbolic cross and the sparse
grid.

0 1 0 0
0 1 :
i = {ko ko kaez? L =S| [ O] )0 fo] ¢
: 0
0 0 0 1

S¢ = 1H?, and |H{| = |S{| = d + 1. Moreover, for all k € H{ and & € S{ holds

kw:kTa::{% for k =2z # 0 e%ikw:{_l for k =22 # 0

0 otherwise; 1 otherwise;

and thus the Fourier matrix is given by

1 1 ... 1 V2 1
Fi{=|" = 2I,.,+UU", U=1| | (4.1)
1 ... 1 -1 0 1

Regarding the inverse HCFFT and the computational complexity of this Fourier transform,
we obtain
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Lemma 4.3. For fixed refinement n = 1 and spatial dimension d € N, the inverse Fourier
matrix (F$)~1 € RETD*@+) allows for the decomposition

—d=3 _1 _1 _d=3

2 2 2 2
B 1 1 0 1
(F) " =—Slon-VW', V=] , W=

1 0
Moreover, the matrix vector multiplication with F¢ and its inverse take at most 3d + O(1)
floating point operations.

Proof. Due to

UTU:<2 V2

1
fal) o= (G ) ()
the Sherman Morrison Woodbury formula yields
2(d—3) -2 ... -2
(i) = _%Idﬂ B %U <d?/% _(\)@> U'= _%Id—l—l - i - 0 . 0

-2 0O ... O
and thus the assertion. The complexity estimate easily follows, since the multiplication with

U' or W takes d+O(1), the multiplication with U or V takes O(1), and the addition with
the scaled input vector takes 2d + O(1) floating point operations.

|
Lemma 4.4. For d € N, d > 2, the estimates from Theorem 4.1 can be refined to

d—1 _
d=1<||F{lo<d,  —— <|(F) 2 <

N

Proof. For n = 1 the Fourier matrix and its inverse are symmetric and thus it suffices to
compute their extremal eigenvalues. Due to the decomposition (4.1), we have

IF§]l2 = =2+ Anax(U ' U)

d+3 d+3)°
=24+ — — ] —2d

()

and in conjunction with Lemma 4.3 also

_ 1 1 d-—3
H(Fcli) 1H2 = 5 + )‘max(VTW)

_ 1l d=3 J(d=3)" d
2 4 4 4
from which the assertions easily follow.

16



5 Summary

We have shown that the condition number of the hyperbolic cross discrete Fourier transform
scales approximately like the square root of the total problem size for fixed spatial dimension
and like the square of the total problem size for fixed refinement. In particular, this limits the
stability of the hyperbolic cross fast Fourier transform such that a significant loss in accuracy
sets in already for moderate spatial dimensions and refinements. Besides standard techniques,
we used a Boolean sum decomposition of the associated inverse Fourier matrix which might
be of independent interest for the numerical analysis of other sparse grid decompositions.
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