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Abstract. A straightforward discretisation of problems in d spatial dimensions often leads to
an exponential growth in the number of degrees of freedom. Thus, even efficient algorithms like the
fast Fourier transform (FFT) have high computational costs. Hyperbolic cross approximations allow
for a severe decrease in the number of used Fourier coefficients to represent functions with bounded
mixed derivatives. We propose a nonequispaced hyperbolic cross fast Fourier transform based on
one hyperbolic cross FFT and a dedicated interpolation by splines on sparse grids. Analogously to
the nonequispaced FFT for trigonometric polynomials with Fourier coefficients supported on the full
grid, this allows for the efficient evaluation of trigonometric polynomials with Fourier coefficients
supported on the hyperbolic cross at arbitrary spatial sampling nodes.
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1. Introduction. The discretisation of high dimensional problems often leads
to an exponential growth in the number of degrees of freedom. We consider the
d dimensional discrete Fourier transform

f(x) =
∑

k∈Ĝn

f̂ke2πikx, x ∈ Gn, (1.1)

with equispaced nodes in frequency domain Ĝn = ×dl=1Ĝnl
, Ĝn = Z∩ (−2n−1, 2n−1],

and space domain Gn = ×dl=1Gnl
, Gn = 2−n(Z ∩ [0, 2n)), which maps |Ĝn| = |Gn|

Fourier coefficients to the same number of sample values. Here |Ĝn| denotes the
cardinality of the set Ĝn ⊂ Zd and even efficient algorithms like the d dimensional fast
Fourier transform (FFT) need O(|Gn| log |Gn|) arithmetic operations for (1.1), i.e.,
O(2ndnd) if nl = n, l = 1, . . . , d. This is labelled as the curse of dimensions and the use
of sparsity has become a very popular tool for handling such problems. For moderately
high dimensional problems the use of sparse grids and the approximation on hyperbolic
crosses has decreased the problem size dramatically from O(2nd) to O(2nnd−1) while
hardly deteriorating the approximation error, see e.g. [27, 28, 25, 6, 24]. Of course, an
important issue is the adaption of efficient algorithms to these thinner discretisations
such that their total complexity, within logarithmic factors, is still linear in the reduced
problem size. Such improvements were studied in [2, 17, 15] and are known as the
hyperbolic cross fast Fourier transform (HCFFT).

On the other hand, the FFT has been generalised to the nonequispaced fast
Fourier transform (NFFT), cf. [11, 4, 26, 23, 16, 18], which takes O(|Gn| log |Gn|+M)
arithmetic operations for the approximate evaluation of the trigonometric polynomial
(1.1) at M arbitrary nodes x ∈ Rd. FFT algorithms can be considered as exact al-
gorithms up to floating-point errors. In contrast, the NFFT algorithm systematically
introduces an approximation error in the computations in order to achieve the desired
computational complexity. This additional error can be controlled, and if necessary,
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can be reduced to the order of machine precision. To this end, the NFFT uses an
oversampled FFT internally and a local approximation, effectively introducing two ad-
ditional parameters, an oversampling factor and a truncation parameter, that control
the accuracy of the NFFT.

In this paper, we generalise the HCFFT [2, 17, 15] for arbitrary sampling nodes.
More specific, we propose a new algorithm for the efficient evaluation of trigonometric
polynomials with Fourier coefficients supported on the hyperbolic cross at arbitrary
spatial sampling nodes. Earlier work in [13] was based on a partition of the hyperbolic
cross and several NFFTs. The complicated partition of the hyperbolic cross makes the
implementation of this algorithm hard even for low dimensions e.g. three. Moreover,
each NFFT uses one oversampled FFT and a local approximation scheme which have
to be glued together at a later stage. In contrast, our new evaluation scheme is
based on one oversampled HCFFT, which is easily implemented for arbitrary spatial
dimension, using the unidirectional scheme [15], and a local approximation by splines
interpolating on the sparse grid [5], which yields a global approximant to the given
trigonometric polynomial. Beyond the scope of this paper, our algorithm can be used
within iterative schemes for computing Fourier coefficients on the hyperbolic cross
from samples at scattered sampling nodes. However note that such reconstructions
are expected to be stable only under appropriate Nyquist type criteria which have
been given for the full grid case recently in [12, 20].

The paper is organised as follows: After introducing the necessary notation, we
discuss the periodic spline interpolation for the univariate case and its use for interpo-
lation on sparse grids. In Section 4, we introduce our novel nonequispaced hyperbolic
cross fast Fourier transform (NHCFFT), estimate its approximation error in Theorem
4.1, and give a complexity analysis with respect to the problem size, the target accu-
racy, and fixed spatial dimension. Finally, we present our numerical experiments for
the hyperbolic cross FFT and its nonequispaced version and conclude our findings.

2. Prerequisite. Let a spatial dimension d ∈ N and a refinement n ∈ N0 be
given. We denote by Td ∼= [0, 1)d the d dimensional torus, consider Fourier series
f : Td → C, f(x) =

∑
k∈Zd f̂ke2πikx, and restrict the frequency domain to the

hyperbolic cross

Hd
n :=

⋃
j∈Nd

0
‖j‖1=n

Ĝj = {k ∈ Ĝj : ‖j‖1 = |j1|+ |j2|+ . . .+ |jd| = n} ⊂ Zd, (2.1)

see Figure 2.1(a). Our aim is the fast approximate evaluation of the d-variate trigono-
metric polynomial

f(x) =
∑

k∈Hd
n

f̂k e2πikx, (2.2)

at nodes x` ∈ Td, ` = 0, . . . ,M − 1. The space of all such trigonometric polynomials
with Fourier coefficients supported on the hyperbolic cross is denoted by Πhc

n (Td).
For the moment, we restrict ourselves to sparse grids

Sdn :=
⋃

j∈Nd
0

‖j‖1=n

Gj = {x ∈ Gj : ‖j‖1 = n} ⊂ Td, (2.3)
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see Figure 2.1(b), as sampling sets and obtain the following well known results, cf. [17].
For fixed dimension d ∈ N and arbitrary refinement n ∈ N0, we have the partition

Hd
n =

n⋃
s=0

Hd−1
n−s × (Ĝs \ Ĝs−1), Ĝ−1 := ∅, (2.4)

and the cardinality estimates

|Sdn| = |Hd
n| =

min(n,d−1)∑
j=0

2n−j
(
n
j

)(
d− 1
j

)
=

2nnd−1

2d−1(d− 1)!
+O(2nnd−2). (2.5)

(a) Hyperbolic cross H2
7 ⊂ Z2. (b) Sparse grid S2

7 ⊂ T2.

Figure 2.1. Two dimensional hyperbolic cross and corresponding sparse grid.

Moreover, we denote the efficient evaluation of (2.2) at the sparse grid nodes
x` ∈ Sdn, ` = 0, . . . , |Sdn| − 1, by hyperbolic cross fast Fourier transform (HCFFT)
and the reconstruction of Fourier coefficients on the hyperbolic cross from samples
at the sparse grid nodes by inverse HCFFT. Both transforms can be computed in
O(2nnd) floating point operations, cf. [2, 17]. In contrast, a naive evaluation of (2.2)
at the sparse grid nodes (hyperbolic cross discrete Fourier transform, HCDFT) or
equivalently a matrix vector multiplication with the hyperbolic cross Fourier matrix

F d
n :=

(
e2πikx

)
x∈Sd

n,k∈Hd
n

(2.6)

takes O(22nn2d−2) floating point operations. Given an arbitrary sampling set

X := {x` ∈ Td : ` = 0, . . . ,M − 1},

the naive evaluation of (2.2), i.e., the matrix vector multiplication with the nonequi-
spaced hyperbolic cross Fourier matrix

Ad
n :=

(
e2πikx

)
x∈X ,k∈Hd

n
(2.7)

takes O(2nnd−1M) floating point operations.
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3. Periodic splines.

3.1. Univariate interpolation. Let the cardinal B-spline Nm : R→ R,

Nm+1 := Nm−1 ∗N1 =
∫ 1

0

Nm−1(· − t) dt, N1 := χ[0,1), (3.1)

of order m ∈ N be given. Subsequently, we always assume a B-spline of even order
m ∈ 2N. For a given spline refinement r ∈ N0, we define the periodic spline φr : T→
C, its translates φr,k : T→ C,

φr :=
∑
j∈Z

Nm (2r(·+ j)) , φr,k := φr

(
· − k

2r

)
, k = 0, . . . , 2r − 1. (3.2)

and the corresponding spaces

Vr := span{φr,k : k = 0, . . . , 2r − 1}. (3.3)

For f ∈ C(T), let the interpolation operator Lr : C(T)→ Vr be uniquely defined,
see [21] for details, by

Lrf(x) = f(x), x ∈ Gr.

Then the spline coefficients ar,k ∈ C, k = 0, . . . , 2r − 1, in the representation

Lrf =
2r−1∑
k=0

ar,kφr,k

can be computed by O(2rm) floating point operations, cf. [3, 5]. Concerning the
interpolation error, the relevant results from [19] state the following.

Lemma 3.1. Let r ∈ N0, m ∈ 2N, and the kernel Kr : [0, 1]2 → R,

Kr(x, y) := bm(x, y)−
2r−1∑
k=0

bm

(
k

2r
, y

)
Lr,k(x)

built upon the Lagrange polynomials and the modified Bernoulli splines

Lr,k(x) :=
2r−1∏
l=0,l 6=k

2rx− l
k − l

, k = 0, . . . , 2r − 1,

bm(x) :=
∑

k∈Z\{0}

(2πik)−me2πikx, bm(x, y) := bm(x)− bm(x− y)

be given. Moreover, let f : [0, 1] → C be m-times continuously differentiable and let
f (m) denote its m-th derivative. Then, the interpolation error allows for the repre-
sentation

(I − Lr)f(x) =
∫ 1

0

Kr(x, y)f (m)(y) dy.

Moreover, the error is bounded since

sup
x∈[0,1]

‖Kr(x, ·)‖1 = sup
x∈[0,1]

{∫ 1

0

|Kr(x, y)|dy
}

=
Fm

(2rπ)m
,

where π2

8 ≤ Fm = 4
π

∑∞
s=0(−1)s(2s+ 1)−m−1 < 4

π denotes the Favard constant.
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3.2. Multivariate interpolation. For spatial dimension d ∈ N, we define the
spline interpolation operator L(d)

r : C(Td)→ V
(d)
r ,

L(d)
r :=

⊕
j∈Nd

0
‖j‖1=r

Lj1 ⊗ . . .⊗ Ljd , V (d)
r := Im L(d)

r ,

where the superscript is skipped for d = 1. The main difficulty in this Boolean sum
approach is the structure of the basis functions in V

(d)
r . We consider the following

generating system as already suggested in [5] for the bivariate case. Let

φ
(d)
j,k :=

d⊗
l=1

φjl,kl
, j,k ∈ Nd0, k < 2j , i.e., kl = 0, . . . , 2jl − 1, l = 1, . . . , d,

and Ṽ
(d)
r := span{φ(d)

j,k : j,k ∈ Nd0, ‖j‖1 = r, k < 2j}.
Lemma 3.2. Let a spatial dimension d ∈ N and a spline refinement r ∈ N0 be

given, then
1. functions f ∈ C(Td) are interpolated on the sparse grid, i.e.,

L(d)
r f(x) = f(x), x ∈ Sdr ,

2. moreover, the Boolean sum can be expressed as

L(d)
r =

r∑
j=0

L(d−1)
j ⊗ Lr−j −

r−1∑
j=0

L(d−1)
j ⊗ Lr−j−1, (3.4)

3. and finally, we have

V (d)
r ⊂ Ṽ (d)

r , dimV (d)
r = |Sdr |, |Ṽ (d)

r | = 2r
(
r − 1 + d

d− 1

)
= O(2rrd−1),

where the last expression holds true for fixed d ∈ N.
Proof. All results easily follow from [8, Sec. 1-2]. Due to its definition, the

operator L(d)
r interpolates on all grids Gj , ‖j‖1 = r, and thus on Sdr , cf. [8, Sec. 2.3,

Prop. 2]. The second assertion is due to [8, Sec. 1.3, Prop. 2]. Moreover, the target
spaces allow for the recursion

V (d)
r = Im L(d)

r =
r∑
j=0

Im L(d−1)
j ⊗ Im Lr−j =

r∑
j=0

V
(d−1)
j ⊗ Vr−j

and thus Ṽ (d)
r yields a generating system for V (d)

r . Finally, [8, Sec. 2.3, Prop. 4]
yields the dimension of V (d)

r and since the number of multi-indices j with ‖j‖1 = r is(
r+d
d

)
−
(
r−1+d
d

)
=
(
r−1+d
d−1

)
, the last assertion follows.

We represent the interpolating function L(d)
r f by an expansion in Ṽ

(d)
r , i.e.,

L(d)
r f =

∑
j∈Nd

0
‖j‖1=r

∑
k∈Nd

0
k<2j

aj,kφ
(d)
j,k. (3.5)
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For d ≥ 2, a simple reorganisation of the above sum yields for x ∈ Td−1, y ∈ T

L(d)
r f(x, y) =

r∑
l=0

2l−1∑
r=0

 ∑
j∈Nd−1

0
‖j‖1=r−l

∑
k∈Nd−1

0
k<2j

a(j,l),(k,r)φ
(d−1)
j,k (x)

φl,r(y).

Now let l, r be fixed and solve the d − 1 dimensional interpolation problem in the
brackets. If we assume that this can be done in C1m(r− l)d−12r−l arithmetic opera-
tions, an induction argument yields a total complexity of O(2rrd−1m) for computing
the spline coefficients aj,k, j,k ∈ Nd0, ‖j‖1 = r, k < 2j , from the samples f(x),
x ∈ Sdr . Details of the two dimensional interpolation algorithm are given in [5].

3.3. Evaluation at arbitrary nodes. Finally, we compute function values of
L(d)
r f at arbitrary sampling nodes x ∈ Td. For fixed x ∈ T, j ∈ N0, and k =

0, . . . , 2j − 1, we have

φj,k(x) 6= 0 if and only if k ∈
{
b2jxc −m+ 1, . . . , b2jxc

}
,

where b·c denotes the floor function. Thus, the inner sum in (3.5) contains only md

non-zero summands. In conjunction with the estimate on the number of multi-indices
j ∈ Nd0, ‖j‖1 = r, from the proof of Lemma 3.2, and assuming that a single B-
spline can be evaluated with constant effort, we obtain a total number of arithmetic
operations O(rd−1md) for evaluation of one function value L(d)

r f(x).

4. The nonequispaced hyperbolic cross fast Fourier transform. We com-
bine the hyperbolic cross FFT [2, 17, 15] and the spline approximation scheme [5]
generalised to spatial dimension d ∈ N in the following Algorithm 1 for the fast and
approximate multiplication with the Fourier matrix Ad

n, cf. (2.7). The multiplica-
tion with the adjoint Fourier matrix (Ad

n)∗ easily follows and is denoted by adjoint
NHCFFT subsequently.

4.1. Error estimates. Algorithm 1 introduces an error when approximating the
trigonometric polynomial by the spline. Subsequently, we show that for a moderate
oversampling exponent α ∈ N, α ≥ d, the error decays exponentially with the spline
order m ∈ 2N. Theorem 4.1 gives a slightly more general statement for arbitrary
spline refinement which is then proven by induction.

Theorem 4.1. Let a spatial dimension d ∈ N, a spline refinement r ∈ N0, a
spline order m ∈ 2N, a refinement n ∈ N0, and a trigonometric polynomial f ∈
Πhc
n (Td) be given. Then the interpolation error can be bounded by

‖(I − L(d)
r )f‖∞ ≤

(2r + 2)d−1F dm2nm

2(r−d+1)m

∑
k∈Hd

n

|f̂k| . (4.1)

Proof. We prove the assertion by induction over d ∈ N. Due to Lemma 3.1
and by restricting to the space of trigonometric polynomials Πhc

n (T), the univariate
complement operator Kr := I − Lr allows for the error estimate

|Krf(x)| ≤ ‖Kr(x, ·)‖1‖f (m)‖∞ ≤
Fm2nm

2rm
∑
k∈H1

n

|f̂k|
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Algorithm 1 Nonequispaced hyperbolic cross FFT (NHCFFT)

Input: d ∈ N Spatial dimension
n ∈ N0 Refinement of Hd

n

f̂k, k ∈ Hd
n Fourier coefficients

x` ∈ Td, ` = 0, . . . ,M − 1 Sampling nodes
m ∈ 2N Spline order
α ∈ N, α ≥ d Oversampling exponent

1: Compute samples on the oversampled sparse grid by the HCFFT, i.e., evaluate

f(x) =
∑

k∈Hd
n

f̂k e2πikx, x ∈ Sdn+α.

2: Interpolate on the oversampled sparse grid by L(d)
n+α, see (3.5), i.e., compute

aj,k ∈ C, j,k ∈ Nd0, ‖j‖1 = n+ α, k < 2j , from f(x), x ∈ Sdn+α.

3: For ` = 0, . . . ,M − 1, evaluate the spline

L(d)
n+αf(x`) =

∑
j∈Nd

0
‖j‖1=n+α

∑
k∈Nd

0
k<2j

aj,kφ
(d)
j,k(x`).

Output: L(d)
n+α(x`), ` = 0, . . . ,M − 1 Sample values

and shows (4.1) for d = 1. We generalise to the d-variate complement operator
K(d)
r := I − L(d)

r , where I always denotes the identity operator for functions in an
appropriate number of variables. Using (3.4) from Lemma 3.2, we note for d ≥ 2 that

K(d)
r = I −

r∑
j=0

(I − K(d−1)
j )⊗ (I − Kr−j) +

r−1∑
j=0

(I − K(d−1)
j )⊗ (I − Kr−j−1)

= K(d−1)
r ⊗ I + I ⊗ Kr +

r−1∑
j=0

K(d−1)
j ⊗Kr−j−1 −

r∑
j=0

K(d−1)
j ⊗Kr−j (4.2)

and consider the summands individually. For x ∈ Td−1, y ∈ T, f : Td → C, and
gx(y) = (K(d−1)

j ⊗ I)f(x, y), we have

K(d−1)
j ⊗Kr−j−1f(x, y) = (K(d−1)

j ⊗ I)(I ⊗ Kr−j−1)f(x, y) = Kr−j−1gx(y)

and use Lemma 3.1 to estimate

|K(d−1)
j ⊗Kr−j−1f(x, y)| ≤ Fm

2(r−j−1)mπm
max
z∈T
|K(d−1)
j ⊗ dm

dzm
f(x, z)|. (4.3)
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Restricting again to f ∈ Πhc
n (Td) and using the partition (2.4) we proceed by

K(d−1)
j ⊗ dm

dzm
f(x, z) = K(d−1)

j ⊗ dm

dzm

 ∑
(k,l)∈Hd

n

f̂k,le2πikxe2πilz


=

n∑
s=0

∑
l∈Ĝs\Ĝs−1

(2πil)me2πilz · K(d−1)
j

 ∑
k∈Hd−1

n−s

f̂k,le2πikx

 .

Due to the induction hypothesis for K(d−1)
j and since |l| ≤ 2s−1, we estimate for

j = 0, . . . , r − 1

|K(d−1)
j ⊗ dm

dzm
f(x, z)| ≤

n∑
s=0

∑
l∈Ĝs\Ĝs−1

(2π|l|)m (2j + 2)d−2F d−1
m 2(n−s)m

2(j−d+2)m

∑
k∈Hd−1

n−s

|f̂k,l|

≤ (2j + 2)d−2F d−1
m 2nmπm

2(j−d+2)m

∑
(k,l)∈Hd

n

|f̂k,l|.

In conjunction with (4.3) this yields

|K(d−1)
j ⊗Kr−j−1f(x, y)| ≤ (2j + 2)d−2F dm2nm

2(r−d+1)m

∑
(k,l)∈Hd

n

|f̂k,l|, j = 0, . . . , r − 1.

Analogously, all summands in (4.2) can be bounded - in particular

|K(d−1)
j ⊗Kr−jf(x, y)| ≤ (2j + 2)d−2F dm2nm

2(r−d+2)m

∑
(k,l)∈Hd

n

|f̂k,l|, j = 0, . . . , r.

We finally use
∑r−1
j=0(2j + 2)d−2 ≤

∫ r
0

(2j + 2)d−2 dj = (2r+2)d−1

2(d−1) to estimate

‖K(d)
j f‖∞ /

∑
(k,l)∈Hd

n

|f̂k,l| ≤
(2r + 2)d−2F d−1

m 2nm

2(r−d+2)m
+
Fm2nm

2rm

+
r−1∑
j=0

(2j + 2)d−2F dm2nm

2(r−d+1)m
+

r∑
j=0

(2j + 2)d−2F dm2nm

2(r−d+2)m

≤ (2r + 2)d−1F dm2nm

2(r−d+1)m2
Cm,r,d,

where

Cm,r,d :=
1

(r + 1)Fm2m
+

1
(r + 1)d−1F d−1

m 2(d−1)m
+

1
d− 1

+
1

2m(d− 1)
+

1
2m(r + 1)

.

Bounding the term Cm,r,d from above by two (d ≥ 2, r ≥ 0, m ≥ 2, and Fm ≥ 1)
yields the assertion.

Remark 4.2. For the univariate case d = 1, an oversampling factor σ > 1,
and a periodic spline interpolation of order m ∈ 2N at σ2n nodes (formally let r =
log2(σ2n)), the error estimate (4.1) reads as

‖(I − Lr)f‖∞/
∑
k∈Ĝn

|f̂k| ≤ Fmσ−m,
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which can be improved to 8(2σ−1)−m, cf. [26, Cor. 4.3]. While Algorithm 1 computes
the spline coefficients from samples in its second step, dividing the given Fourier
coefficients by the discrete Fourier coefficients of the used B-spline leads to the same
spline coefficients in [26, Algorithm 2.1 with (4.4)].

Moreover, the error estimate (4.1) can be refined to

‖(I − L(2)
r )f‖∞ ≤

(
r

2(r−1)m
+
r + 3
2rm

)
F 2
m2nm

∑
k∈H2

n

|f̂k|

for d = 2 and to

‖(I − L(3)
r )f‖∞ ≤

1
2

(
(r − 1)r
2(r−2)m

+
2r(r + 4)
2(r−1)m

+
(r + 2)(r + 6)

2rm

)
F 3
m2nm

∑
k∈H3

n

|f̂k|

for d = 3, see [9, Theorems 3.19 and 3.24].
Corollary 4.3. Let a spatial dimension d ∈ N, a refinement n ∈ N with n ≥ d,

and a target accuracy ε > 0 be given and choose the oversampling exponent α = d in
Algorithm 1. Then for spline orders m ∈ 2N with

m ≥ | log2 ε|+ d log2 n+ 3d (4.4)

the complex exponentials are approximated such that

|e2πikx − L(d)
n+de

2πikx| ≤ ε, k ∈ Hd
n, x ∈ Td.

Proof. Setting f(x) = e2πikx in Theorem 4.1 yields

|e2πikx − L(d)
n+de

2πikx| ≤ (4n+ 2)d−14d

πd2m
≤ ε ⇔ m ≥ log2

(4n+ 2)d−14d

πdε

for which (4.4) is sufficient.

4.2. Complexity estimates. As outlined in Section 2, the HCFFT and thus
Step 1 of Algorithm 1 with a fixed oversampling exponent α ∈ N takes O(2nnd)
floating point operations. Moreover, the spline interpolation in Step 2, cf. Section
3.2, and the spline evaluation in Step 3, cf. Section 3.3, are realised in O(2nnd−1m)
and O(Mnd−1md) operations, respectively. For d ∈ N, M = |Hd

n| nodes, and a target
accuracy ε > 0 this sums up to a total complexity of

O
(
2nn2d−2(| log ε|+ log n)d

)
instead of O(22nn2d−2) for the nonequispaced HCDFT, cf. (2.7). We summarise the
arithmetic complexity of our new Algorithm in comparison to other discrete and fast
Fourier transforms in the following Table 4.1.

Finally, we consider the memory usage of the algorithms for the matrix vector
multiplication with the Fourier matrix Ad

n, cf. (2.7). The NHCDFT uses direct calls
to the complex exponentials and thus takes only O(2nnd−1 +M) bytes for storing the
input and output vectors, i.e., is linear in the problem size. The NHCFFT has the
same space complexity but introduces an exponential factor in d due to oversampling.
The fastest method for this matrix vector multiplication and small refinements is to
set up the Fourier matrix Ad

n explicitly. This takes O(2nnd−1M) bytes of storage,
which is too costly already for moderate problem sizes.



10 Michael Döhler, Stefan Kunis, and Daniel Potts

Algorithm k Size x Size O-complexity Reference

DFT Ĝn 2nd Gn 2nd 22nd

FFT Ĝn 2nd Gn 2nd 2ndnd e.g. [7, 14]
NDFT Ĝn 2nd X M 2ndM
NFFT Ĝn 2nd X M 2nd +M e.g. [18]

HCDFT Hd
n 2nnd−1 Sdn 2nnd−1 22nn2d−2

HCFFT Hd
n 2nnd−1 Sdn 2nnd−1 2nnd [2, 17, 15]

NHCDFT Hd
n 2nnd−1 X M 2nMnd−1

NHCFFT Hd
n 2nnd−1 X M 2nnd +Mnd−1 logd n Algorithm 1

Table 4.1
Problem sizes and computational complexities for increasing refinement n, fixed accuracy, and

fixed spatial dimension.

5. Implementation and numerical results. For the reader’s convenience, we
provide an efficient and reliable implementation of the presented algorithms in Mat-
lab. Following the commonly accepted concept of reproducible research, all numerical
experiments are included in our publicly available toolbox [10]. The toolbox includes
an interface to the tensor toolbox [1] for simple handling of sparse grids and hyperbolic
crosses. All numerical results were obtained on an Intel Xeon Dual Core CPU with
3GHz, 64GByte RAM running OpenSUSE Linux 10.3 X86-64 and Matlab 7.8.0.347.
Time measurements were performed by employing the Matlab function cputime. For
dimensions d ∈ N and refinements n ∈ N, we choose Fourier coefficients f̂k ∈ C,
k ∈ Hd

n, uniformly at random with |f̂k| ≤ 1. Within the nonequispaced HCFFT, the
sampling nodes xj ∈ Td are also drawn uniformly at random.

5.1. The hyperbolic cross fast Fourier transform. We compare the com-
putation time of the hyperbolic cross discrete Fourier transform (HCDFT) and the
hyperbolic cross fast Fourier transform (HCFFT). For the HCDFT we compare two
different methods, the direct summation

fx =
∑

k∈Hd
n

f̂k e2πikx, x ∈ Sdn,

and the matrix vector multiplication with the explicitly set up Fourier matrix F d
n,

cf. (2.6), which is denoted by (matrix-vector) subsequently and requires O
(
22nn2d−2

)
bytes for storage.

Figure 5.1(a)–5.1(c) show the computation time of the HCDFT and HCFFT
for the two, three and ten dimensional case and increasing refinement n. Besides the
better asymptotic complexity O

(
2nnd

)
instead of O

(
22nn2d−2

)
, the HCFFT also has

a low break even with the HCDFT variants at refinements n ≈ 6 (direct summation)
and n ≤ 12 (matrix-vector). Thus, we observe that the HCFFT outperforms the
HCDFT at small refinements and for arbitrary spatial dimension. Moreover, Figure
5.1(d) gives the computational times for a constant refinement n = 6 and increasing
dimension d = 2, . . . , 20.
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(a) Dimension d = 2 (b) Dimension d = 3

(c) Dimension d = 10 (d) Refinement n = 6

Figure 5.1. Computational time for the HCDFT and HCFFT with respect to the refinement
n and the dimension d.

5.2. Accuracy of the nonequispaced HCFFT. In a second experiment, we
examine the accuracy of the NHCFFT against the NHCDFT with respect to an
increasing spline order in Figure 5.2. The error of Algorithm 1 is measured by

E∞ =
max`=0,...,M−1 |(I − L(d)

n+α)f(x`)|∑
k∈Hd

n
|f̂k|

which is of course bounded by Theorem 4.1 and Remark 4.2. The error decays ex-
ponentially with increasing spline order m ∈ 2N. However, a certain loss of accuracy
sets in for large spline orders which might be due to the numerical precalculation of
the zeros of certain Euler-Frobenius polynomials used in the spline interpolation step.

5.3. Computational times of the nonequispaced HCFFT. We compare
the computational times for the naive evaluation of (2.2) and the NHCFFT with re-
spect to an increasing refinement and a number of nodes M = |Hd

n| in Figure 5.3. The
better asymptotic complexity O(2nn2d−2(| log ε|+ log n)d) instead of O

(
22nn2d−2

)
is

supported by the obtained computation times for the bi- and trivariate case. However
note that the spline evaluation step dominates the NHCFFT already for n ≥ 5 and
d = 3.
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(a) Dimension d = 2; oversampling exponent α =
2; refinement n = 6, 10, 14

(b) Dimension d = 3; oversampling exponent α =
3; refinement n = 6, 10

Figure 5.2. Relative error E∞ of NHCFFT with respect to spline order m.

(a) Dimension d = 2; oversampling exponent α =
2; spline order m = 4

(b) Dimension d = 3; oversampling exponent α =
3; spline order m = 4

Figure 5.3. Computational times of the NHCDFT, the NHCFFT, and its three steps with
respect to the refinement n.

5.4. Fast summation with kernels of dominating mixed smoothness.
Finally, we consider an example which shows the compression and fast application of
a kernel matrix to a vector, where the kernel is non-local, translation invariant, and
of dominating mixed smoothness. Let the B-spline kernel matrix

K =
(
N

(2)
4 (4(xj − yl +

1
2

)
)
l=1,...,L;j=1,...,M

, N
(2)
4 = N4 ⊗N4, xj ,yl ∈ [

1
4
,

3
4

),

be given. Figure 5.4 shows N (2)
4 (4·) and the Fourier coefficients dk, k ∈ Ĝ(7,7), of

the trigonometric polynomial interpolating N
(2)
4 (4·) at the full grid G(7,7), i.e., the

refinement is set to n = 7. Clearly, the Fourier coefficients on Ĝ(7,7) \ H2
7 are small

and might be neglected causing a relative error of 10−4. The remaining Fourier
coefficients are used in d = (dk)k∈H2

7
and following the ideas in [22], we set up a

degenerate approximation of the B-spline kernel and thus the matrix approximation

K ≈ AY(diagd)A∗X , AY =
(
e2πikyl

)
l=1,...,L,k∈H2

7
, AX =

(
e2πikxj

)
j=1,...,M,k∈H2

7
.
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(a) Spatial domain (b) Frequency domain

Figure 5.4. B-spline N
(2)
4 (4·) and Fourier coefficients dk, both normalised.

Similar to the fast multiplication with a circulant matrix, the approximate matrix
vector multiplication with K can be realised by an adjoint NHCFFT, a pointwise
multiplication in frequency domain, and an NHCFFT, i.e.,

Kg = h ≈ h̃ = AY(diagd)A∗Xg.

The naive matrix vector multiplication, having complexity O(LM), takes 5.56 seconds
for M = L = 3200 nodes when using columnwise updates. In contrast, the above
approximation yields a complexity O(L+M) and takes only 2.63 seconds if we set the
spline order m = 4 and the oversampling exponent α = 2 as NHCFFT parameters.
This results in an error ‖h − h̃‖∞/‖g‖1 ≤ 10−5, gj ∈ [−1, 1] drawn uniformly at
random.

6. Summary. We have shown that the HCFFT can be generalised to nonequi-
spaced nodes in order to evaluate trigonometric polynomials with Fourier coefficients
supported on the hyperbolic cross at arbitrary spatial sampling nodes efficiently. Anal-
ogously to the nonequispaced FFT which relies on one oversampled FFT and a local
approximation scheme, the nonequispaced HCFFT uses one oversampled HCFFT
and a local approximation scheme by interpolating splines on the sparse grid. The
complexity of Algorithm 1 is up to logarithmic factors linear in the problem size,
the accuracy of the scheme is guaranteed to enter the complexity only as | log ε|d.
An efficient implementation of the HCFFT for arbitrary spatial dimension and its
nonequispaced version for the bi- and trivariate is made publicly available in [10].

Our theoretical and numerical results indicate that (2.2) is computed efficiently by
Algorithm 1 already for moderate refinements n ∈ N and spatial dimensions d = 2, 3.
The computational dominant, i.e., most expensive step is the evaluation of the spline
which scales as O(2nn2d−2(| log ε|+ log n)d).
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14 Michael Döhler, Stefan Kunis, and Daniel Potts

REFERENCES

[1] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping. ACM Trans. Math. Software, 32:635 – 653, 2006.

[2] G. Baszenski and F.-J. Delvos. A discrete Fourier transform scheme for Boolean sums of
trigonometric operators. In C. K. Chui, W. Schempp, and K. Zeller, editors, Multivariate
Approximation Theory IV, ISNM 90, pages 15 – 24. Birkhäuser, Basel, 1989.
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[9] M. Döhler. Nichtäquidistante schnelle Fouriertransformation auf dem hyperbolischen Kreuz.

Diplomarbeit, Faculty of Mathematics, Chemnitz University of Technology, 2008.
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Math., 63:83 – 97, 1992.
[18] J. Keiner, S. Kunis, and D. Potts. Using NFFT3 - a software library for various nonequispaced

fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30, 2009.
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